If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(3W+2)-2(W^-8)=W(W+5)-6W+7
We move all terms to the left:
(3W+2)-2(W^-8)-(W(W+5)-6W+7)=0
We multiply parentheses
(3W+2)-2W-(W(W+5)-6W+7)+16=0
We get rid of parentheses
3W-2W-(W(W+5)-6W+7)+2+16=0
We calculate terms in parentheses: -(W(W+5)-6W+7), so:We add all the numbers together, and all the variables
W(W+5)-6W+7
We add all the numbers together, and all the variables
-6W+W(W+5)+7
We multiply parentheses
W^2-6W+5W+7
We add all the numbers together, and all the variables
W^2-1W+7
Back to the equation:
-(W^2-1W+7)
W-(W^2-1W+7)+18=0
We get rid of parentheses
-W^2+W+1W-7+18=0
We add all the numbers together, and all the variables
-1W^2+2W+11=0
a = -1; b = 2; c = +11;
Δ = b2-4ac
Δ = 22-4·(-1)·11
Δ = 48
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$W_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$W_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{48}=\sqrt{16*3}=\sqrt{16}*\sqrt{3}=4\sqrt{3}$$W_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-4\sqrt{3}}{2*-1}=\frac{-2-4\sqrt{3}}{-2} $$W_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+4\sqrt{3}}{2*-1}=\frac{-2+4\sqrt{3}}{-2} $
| 2(2l+2)=20 | | 2=(4y-9)=14 | | -5+120=6x-1 | | (6x-5)(=2x+1) | | x2+3x+37=0 | | y/6-3=y | | 6x/7=8/21 | | -2/5x=3/20 | | 4g-4=11+7g | | X+48+(x-68)=180 | | x+2/30=4 | | 225=5(x-50)+75 | | 7x^2-9x+12=5x^2-67x2−9x+12=5x2−6 | | i−9=1 | | 10+2(4w-1)=60 | | 2/3y+3/5=1/4 | | -8/17x=16 | | 13x-4=-16 | | x=4x-25+180 | | x+.25(24-×)=4.50 | | 4(41-22c/72)+118c=11 | | 14(3x−1)=2x−2314(3x-1)=2x-23 | | 20x=9000 | | 3x+14-2x=9+3x-5 | | x−6=-4 | | 8g-7=6g+24 | | -2x-7+9=22 | | 6m+2(3m-4)=-32 | | 7(6v-5)=49 | | 315=-7z-8z | | 3x-7x+45=3x+31 | | 3x+10=31/2x+5 |